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PRIMITIVE t-NOMIALS (t =3, 5) OVER GF(2) 
WHOSE DEGREE IS A MERSENNE EXPONENT < 44497 

YOSHIHARU KURITA AND MAKOTO MATSUMOTO 

ABSTRACT. All of the primitive trinomials over GF(2) with degree p given by 
one of the Mersenne exponents 19937, 21701, 23209, and 44497 are presented. 
Also, one example of a primitive pentanomial over GF(2) is presented for 
each degree up to 44497 that is a Mersenne exponent. The sieve used is briefly 
described. A problem is posed which conjectures the number of primitive pen- 
tanomials of degree p. 

1. INTRODUCTION 

A number of authors [3-7] have determined primitive t-nomials (t-term poly- 
nomials) over GF(2). Zierler and Brillhart [6] have calculated all irreducible 
trinomials (t = 3) of degree n, n < 1000, with the period for some for which 
the factorization of 2n _ 1 is known; Stahnke [4] has listed one example of 
a trinomial or pentanomial (t = 5) for each degree n, n < 168; Zierler [7] 
has listed all primitive trinomials for each degree of Mersenne exponent up to 
11213. 

This note is an extension of these works: let Mn denote the nth Mersenne 
exponent (for example, M27 = 44497 and 2M27 - 1 is known to be prime), 
and let q, qk (k =. 1, 2, 3) be positive integers. Table A lists all primitive 
trinomials Xp + X' + 1 over GF(2) for which p = Mn, 24 < n < 28, and 
q < [p/2J . Table B lists one example of primitive pentanomials Xp+Xq3+Xq2+ 
Xq, + 1 over GF(2) for which p = Mn, 8 < n < 27, and p > q3 > q2 > q, 
where qk is randomly chosen from the interval [ Lp (2k - 1)/8J: Lp(2k + 1)/8J] 
to provide some distance between p, q3, q2, q1 , and 0. 

2. TEST FOR PRIMITIVITY 

If 2P - I is prime, then the primitivity is equivalent to the irreducibility. The 
test for the primitivity comprises the following three sieves. The first two of 
these are only necessary condition tests, but they are useful for a prescreening 
with relatively high speed. The third sieve is a necessary and sufficient test. Let 
f(X) be a trial t-nomial of degree p, where t = 3, 5. 
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Sieve I: mod k test (k = 3, 5, 9). As stated below in (a)-(c), for some k > 0, 
one can determine very rapidly whether gcd(f(X), Xk _ 1) equals 1 or not. If 
it equals 1, then f(X) goes forward to the next sieve. About 30% of trials are 
rejected by this sieve. 

(a) For some k > 0, there is an irreducible polynomial h(X) with the follow- 
ing two properties: (i) h(X) I Xk _ 1, (ii) every multiple of h(X) with degree 
< k- I and with the number of terms < t is limited to the form XIh(X), 
where 0 < 1 < k - deg(h(X)) - 1. For t = 3, and for k < 26, there are two 
such h(X): X2 +X + 1 (k = 3), X6 +XI + 1 (k = 9). For t = 5, and for 
k < 24, in addition to the above two, there is: X4 + X3 + X2 +X+1 (k= 5). 

(b) Let rk(X) be the remainder polynomial of the division f(X)/(Xk - 1). 
This rk(X) is obtained easily by reducing modulo k the exponent of every 
term of f(X) . It is clear that deg(rk(X)) < k - 1 and the number of terms of 
rk(X) is not greater than that of f(X) . 

(c) From (a) and (b), we get h(X) I f(X) if and only if rk(X) = X'h(X) for 
some I > 0. It is easy to determine whether this last equality holds, and if it 
holds, then f(X) is rejected. 

Sieve II: gcd test. This sieve is based on the well-known powerful theorem [2, 
p. 48]: let +(X) be an irreducible polynomial over GF(2) of degree m. Then 

q+(X) ix2 -X if and only if m I k. Thus, by computing gcd(f(X), x2 -11) 
for k = 3, 4, ... , kmax successively, we can see whether f(X) has factors of 
degree < k. When kmax = 12, approximately 85% of trial polynomials are 
eliminated by these two sieves. 

Sieve III: necessary and sufficient irreducibility test. If f(X) survives Sieve II, 
then we compute XN mod f(X) , where N = 2- -1. The trial t-nomial f(X) is 
irreducible if and only if the result equals 1. In the actual procedure, we compute 
successively the sequence Xi from X0 to Xp, where Xi = X71I modf(X) over 
GF(2) and X0 = X. 

3. RESULTS 

The search for primitive polynomials was done on the SUN-3, -4 for p < 
9941, on the Cray X-MP for p 2 11213 at the AIST computer center (RIPS), 
Tsukuba. All results and their reciprocals have been verified on all these ma- 
chines by another independently programmed version of Sieve III. In Tables A 
and B, only the exponents of the terms are listed. For example, the first line 
of Table A means that three trinomials exist for p = 19937, q < Lp/2J, with 
q = 881, 7083, and 9842. In the first line of Table B, 31, 23, 11, 9 stands for 
X3 +X 23+XI +X9+ 1. 

Of the entries of Table A, for p = M25 = 21701 = -3mod8 and p = 

M28 = 86243 = 3 mod 8, it is easily found that no primitive trinomial exists as 
follows: Swan's Corollary [1, p. 170] guarantees that the trinomial XP +Xq+1 is 
reducible over GF(2) if p = ?3 mod 8 and if q $6 2. Next we find that by Sieve 
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HI, xP + X2+ 1 is reducible, where p = M25 and M28. Furthermore, in the 
same way, it is found that there is no primitiVe trinomial for p = M30 = 216091 

(or more directly, M30 = 3 mod 8 = I mod 3, hence X2 +X1+1 I XM30+X2+1). 

TABLE A 

Primitive trinomial 

p q 
19937 881, 7083, 9842 
21701 none 
23209 1530, 6619, 9739 
44497 8575, 21034 
86243 none 

TABLE B 
Primitive pentanomial 

_ q3 q2 ql 

31 23 11 9 
61 43 26 14 
89 69 40 20 

107 82 57 31 
127 83 63 22 
521 447 197 86 
607 461 307 167 

1279 988 630 339 
2203 1656 1197 585 
2281 1709 1109 577 
3217 2381 1621 809 
4253 3297 2254 1093 
4423 3299 2273 1171 
9689 7712 5463 2799 
9941 2475 4964 7449 

11213 8218 6181 2304 
19937 14554 8423 3820 
21701 15986 11393 5073 
23209 17777 11796 5005 
44497 35504 18756 10561 

4. PROBABILITY AND PROBLEM 

Let p be a prime number. We can obtain, the "probability" that a pen- 
tanomial of degree p is irreducible as follows. A pentanomial can neither be 
divided by X nor by X + 1. The number of polynomials of degree p which 
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TABLE C 
Observed hit ratio of primitive pentanomial 

(a) number of (b) number of p x hit ratio 
p trials primitive pentanomials = P X (b)/(a) p mod 8 
5 04 0 0.00 -3 
7 20* 0 0.00 -1 

13 220* 66 3.90 -3 
17 560* 152 4.61 1 
19 816* 158 3.68 3 
31 4060* 584 4.46 -1 
61 34220* 1 708 3.04 -3 
89 109 736* 5 902 4.79 1 

107 192920* 4984 2.76 3 
127 325500* 12 656 4.94 -1 
521 500000 5 233 5.45 1 
607 500000 4374 5.31 -1 

1 279 468 200 1 948 5.32 -1 
2203 350300 393 2.47 3 
2281 350000 829 5.40 1 
3217 280000 492 5.65 1 
4253 269400 160 2.53 -3 
4423 289000 347 5.31 -1 

Note: * means exhaust trials, others are by random sampling. 

can be divided neither by X nor by X + 1 is easily proved to be 2P2. On 
the other hand, if p is prime, the number of irreducible polynomials of degree 
p is known to be (2" - 2)/p [2, p. 84]. Thus, a pentanomial of degree p is 
irreducible with probability 4(1 - 2'1p)/p z 4/p. 

Table C indicates the observed hit ratio for 5 < p < 4423. The above 
argument implies that the average of the values p x (hit ratio) should be 4; 
the observed simple average is 4.35 for 13 < p < 4423. This table suggests 
that for p 2 13, one has p x (hit ratio) < 4 if and only if p = ?3mod8. It 
seems that this phenomenon is strongly related to Swan's Corollary referred to 
above, which clarifies the relation between the discriminant and the parity of 
the number of irreducible factors. The authors, however, could not generalize 
the trinomial version of this corollary to a pentanomial one, and pose it as a 
problem: 
Problem. Explain why p = ?3 mod 8 implies a low hit ratio. 
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